Enterprise RAG Architecture
flowchart TD
%% User Layer
UI[User Input] --> Auth[User Authentication]
%% Security & Input Processing
Auth --> Guard{Input Guardrail}
Guard -->|Expected Input| QR[Query Rewriter]
Guard -->|Unexpected Input| UH[Unexpected Input Handler]
%% Query Processing Pipeline
QR --> HyDE{HyDE Enhancement?}
HyDE -->|Yes| QE[Query Expansion]
HyDE -->|No| Encoder[Encoder]
QE --> Encoder
%% Retrieval & Storage
Encoder --> Retrieval[Retrieval Engine]
Retrieval --> EmbedStore[(Embedding Storage)]
Retrieval --> DocStore[(Document Storage)]
%% Document Processing
DI[Document Ingestion] --> EmbedStore
DI --> DocStore
%% Generation Pipeline
Retrieval --> Rerank[Improve Ranking]
Rerank --> Generator[Generator/LLM]
Generator --> OutGuard[Output Guardrail]
OutGuard --> FinalGen[Final Response Generator]
%% Storage & Feedback
Generator --> HistStore[(History Storage)]
FinalGen --> FeedStore[(Feedback Storage)]
FinalGen --> Response[Final Response]
%% Observability
Obs[Observability Platform]
Guard -.-> Obs
Retrieval -.-> Obs
Generator -.-> Obs
OutGuard -.-> Obs
Response -.-> Obs
%% Styling
classDef inputOutput fill:#87CEEB,stroke:#333,stroke-width:2px
classDef guardrail fill:#CD5C5C,stroke:#333,stroke-width:2px
classDef retrieval fill:#F0E68C,stroke:#333,stroke-width:2px
classDef storage fill:#DDA0DD,stroke:#333,stroke-width:2px
classDef observability fill:#2F2F2F,color:#FFF,stroke:#FFF,stroke-width:2px
class UI,Auth,Response inputOutput
class Guard,OutGuard guardrail
class QR,HyDE,QE,Encoder,Retrieval,Rerank,Generator,FinalGen retrieval
class EmbedStore,DocStore,HistStore,FeedStore storage
class Obs observability
Architecture Components
- Security Layer: Input/output guardrails, authentication, content filtering
- Query Processing: HyDE enhancement, query rewriting, encoding optimization
- Retrieval System: Hybrid vector + document storage, multi-stage ranking
- Generation Pipeline: LLM integration, response refinement, quality control
- Observability: End-to-end monitoring, performance tracking, cost analysis
- Storage Strategy: Optimized data persistence, feedback collection, history management
Key Improvements Over Basic RAG
- HyDE (Hypothetical Document Embeddings): 15-25% retrieval accuracy improvement
- Dual Guardrails: Security and quality control at input/output stages
- Multi-stage Ranking: Vector similarity → semantic reranking → final selection
- Comprehensive Observability: Real-time monitoring of all pipeline components
- Fallback Mechanisms: Graceful handling of unexpected inputs and failures
- Production Readiness: Scalability, reliability, and cost optimization built-in
Component |
Technology Options |
Scaling Strategy |
Failure Mode |
Mitigation |
Vector Database |
Pinecone, Weaviate, Qdrant, Chroma |
Horizontal sharding |
Index corruption |
Multi-region replication |
Cache Layer |
Redis, Memcached, DragonflyDB |
Cluster mode, partitioning |
Cache miss storm |
Circuit breaker, fallback |
API Gateway |
Kong, AWS API Gateway, Envoy |
Multi-instance deployment |
Rate limit overflow |
Dynamic rate limiting |
Embedding Service |
SentenceTransformers, OpenAI API |
Auto-scaling pods |
Model loading latency |
Warm model pools |
LLM Service |
OpenAI, Anthropic, vLLM, TGI |
Load balancing, queuing |
Context overflow |
Truncation, summarization |
Production Readiness Checklist
- Observability: Distributed tracing, metrics dashboards, error tracking
- Security: API authentication, rate limiting, input validation
- Reliability: Circuit breakers, retries, fallback responses
- Performance: Connection pooling, caching, async processing
Cost Optimization Strategies
- Use spot instances for embedding generation (60-70% cost reduction)
- Implement query similarity detection to reduce duplicate processing
- Auto-scale embedding services based on request patterns
- Use serverless functions for infrequent retrieval workloads